![]() |
AlmaBTE
1.3
A solver of the space- and time-dependent Boltzmann transport equation for phonons
|
Physical, mathematical and miscellaneous constants used in alma. More...
#include <cmath>#include <complex>

Go to the source code of this file.
Functions | |
| constexpr std::complex< double > | alma::constants::imud (0.0, 1.0) |
| Imaginary unit in double precision. | |
Variables | |
| constexpr double | alma::constants::amu = 1.660538921e-27 |
| Atomic mass unit, kg. | |
| constexpr double | alma::constants::e = 1.602176565e-19 |
| Atomic unit of charge, C. | |
| constexpr double | alma::constants::a0 = 0.52917721092e-10 |
| Bohr radius, m. | |
| constexpr double | alma::constants::NA = 6.02214129e23 |
| Avogadro constant, mol^{-1}. | |
| constexpr double | alma::constants::kB = 1.3806488e-23 |
| Boltzmann constant, J / K. | |
| constexpr double | alma::constants::epsilon0 = 8.854187817e-12 |
| Electric constant, F / m. | |
| constexpr double | alma::constants::me = 9.10938291e-31 |
| Electron mass, kg. | |
| constexpr double | alma::constants::mu0 = 12.566370614e-7 |
| Magnetic constant, Wb. | |
| constexpr double | alma::constants::h = 6.62606957e-34 |
| Planck constant, J s. | |
| constexpr double | alma::constants::hbar = 1.054571726e-34 |
| Dirac constant, J s. | |
| constexpr double | alma::constants::c = 299792458. |
| Speed of light in vacuum, m/s. | |
| constexpr double | alma::constants::pi = 3.1415926535897932384626433832795028841953 |
| Value of pi (to 128 bits) | |
| constexpr char | alma::constants::alphabet [] = "abcdefghijklmnopqrstuwxyz" |
| Lower-case English alphabet. | |
| constexpr double | alma::constants::nsigma = 2.828427124746190097603377448419396157138 |
| A Gaussian PDF is considered to be zero at any point beyond nsigma standard deviations from its mean. More... | |
Physical, mathematical and miscellaneous constants used in alma.
Values taken from http://physics.nist.gov/cuu/Constants/Table/allascii.txt .
| constexpr double alma::constants::nsigma = 2.828427124746190097603377448419396157138 |
A Gaussian PDF is considered to be zero at any point beyond nsigma standard deviations from its mean.